You are now in the main content area

Peer-Reviewed Journal Publications

53.

High throughput microfluidic nanobubble generation by microporous membrane integration and controlled bubble shrinkage (external link, opens in new window) 

A. A. Paknahad, I. O. Zalloum, R. Karshafian, M. C. Kolios, and S. S. H. Tsai

2024 | Journal of Colloid and Interface Science | 653, 277-284

2023 JCIS paper

52.

Controlled Tempering of Lipid Concentration and Microbubble Shrinkage as a Possible Mechanism for Fine-Tuning Microbubble Size and Shell Properties (opens in new window) 

I. O. Zalloum, A. J. Sojahrood, A. A. Paknahad, M. C. Kolios, S. S. H. Tsai, and R. Karshafian

2023 | Langmuir | 39 (49), 17622-17631

Ultrasound characterization of microbubbles

51.

Microfluidic nanobubbles: observations of a sudden contraction of microbubbles into nanobubbles (external link, opens in new window) 

A. A. Paknahad, I. O. Zalloum, R. Karshafian, M. C. Kolios, and S. S. H. Tsai

2023 | Soft Matter | 19, 5142-5149

Surprising observation of microbubbles shrinking to nanobubbles

50.

Microfluidically-generated Encapsulated Spheroids (μ-GELS): An All-Aqueous Droplet Microfluidics Platform for Multicellular Spheroids Generation (external link, opens in new window) 

J. Kieda, S. Appak-Baskoy, M. Jeyhani, M. Navi, K. W. Y. Chan, and S. S. H. Tsai

2023 | ACS Biomaterials Science and Engineering | 9 (2), 1043-1052

2023 ACS Biomaterials Science and Engineering

49.

Water-in-water droplet microfluidics: a design manual (external link, opens in new window) 

M. Jeyhani, J. Kieda, K. Chan, M. Navi, and S. S. H. Tsai

2022 | Biomicrofluidics | 16 (6), 061503

2022 Biomicrofluidics paper

48.

Plug & pop: A 3D-printed, modular platform for drug delivery using clinical ultrasound and microbubbles (external link, opens in new window) 

K. Joshi, R. Sanwal, K. L. Thu, S. S. H. Tsai, and W. L. Lee

2022 | Pharmaceutics | 14 (11), 2516

2022 Pharmaceutics paper

47.

Controlled shrinkage of microfluidically generated microbubbles by tuning lipid concentration (external link, opens in new window) 

I. O. Zalloum, A. A. Paknahad, M. C. Kolios, R. Karshafian, and S. S. H. Tsai

2022 | Langmuir | 38 (43), 13021-13029

Tuning microbubble size by lipid concentration

46.

Phase transition modulation and biophysical characterization of biomolecular condensates using microfluidics (external link, opens in new window) 

K. W. Y. Chan, M. Navi, J. Kieda, T. Moran, D. Hammers, S. Lee, and S. S. H. Tsai

2022 | Lab on a Chip | 22 (14), 2647-2656

Cover article of Lab on a Chip volume 22, issue 14.

2022 Lab on a Chip cover

45.

Materials and methods for droplet microfluidic device fabrication (external link, opens in new window) 

K. S. Elvira, F. Gielen, S. S. H. Tsai, and A. M. Nightingale

2022 | Lab on a Chip | 22 (5), 859-875

Materials and Methods for Droplet Microfluidics Review

44.

Archimedes’ principle with surface tension effects in undergraduate fluid mechanics (external link, opens in new window) 

D. Naylor and S. S. H. Tsai

2022 | International Journal of Mechanical Engineering Education | 50 (3), 749-763

Teaching Archimedes Principle

43.

An ultrafast enzyme-free acoustic technique for detaching adhered cells in microchannels (external link, opens in new window) 

A. Salari, S. Appak-Baskoy, I. R. Coe, S. S. H. Tsai, and M. C. Kolios

2021 | RSC Advances | 11 (52), 32824-32829

Salari et al., RSC Advances, 2021

42.

Biomedical nanobubbles and opportunities for microfluidics (external link, opens in new window) 

A. A. Paknahad, L. Kerr, D. A. Wong, M. C. Kolios, and S. S. H. Tsai

2021 | RSC Advances | 11 (52), 32750-32774

Nanobubbles review paper

40.

Microfluidic generation of monodisperse nanobubbles by selective gas dissolution (external link, opens in new window) 

J. Xu, A. Salari, Y. Wang, X. He, L. Kerr, A. Darbandi, A. C. de Leon, A. A. Exner, M. C. Kolios, D. Yuen, and S. S. H. Tsai

2021 | Small | 17 (20), 2100345

Schematic diagram of microfluidic nanobubble generation

39.

Dosage-controlled intracellular delivery mediated by acoustofluidics for lab on a chip applications (external link, opens in new window) 

A. Salari, S. Appak-Baskoy, I. R. Coe, J. Abousawan, C. Antonescu, S. S. H. Tsai, and M. C. Kolios

2021 | Lab on a Chip | 21 (9), 1788 - 1797

Schematic diagram of acoustofluidic drug delivery

38.

Dancing with the cells: acoustic microflows generated by oscillating cells (external link, opens in new window) 

A. Salari, S. Appak-Baskoy, M. Ezzo, B. Hinz, M. C. Kolios, and S. S. H. Tsai

2020 | Small | 16 (9), 1903788

Invited article for special issue on Microfluidics.
Cover article of Small volume 16, issue 9.

2020 cover article in Small illustrating cell-induced microstreaming flows.

37.

Magnetic polyelectrolyte microcapsules via water-in-water droplet microfluidics (external link, opens in new window) 

M. Navi, J. Kieda, and S. S. H. Tsai

2020 | Lab on a Chip | 16 (20), 2851 - 2860

Cover article of Lab on a Chip volume 16, issue 20.

Magnetic polyelectrolyte microcapsules via water-in-water droplet microfluidics

36.

Evaporation-driven water-in-water droplet formation (external link, opens in new window) 

B-U Moon, L. Malic, K. Morton, M. Jeyhani, A. Elmanzalawy, S. S. H. Tsai, and T. Veres

2020 | Langmuir | 36 (47), 14333-14341

Featured cover article of Langmuir.

Time-lapsed images of ATPS droplet phase separation on a substrate.

35.

Microfluidic generation of all-aqueous double and triple emulsions (external link, opens in new window) 

M. Jeyhani, R. Thevakumaran, N. Abbasi, D. K. Hwang, and S. S. H. Tsai

2020 | Small | 16 (7), 1906565

Schematic diagram and experimental images showing aqueous two phase system double emulsion formation in a hybrid device.

34. 

Inertial particle separation in helical channels: a calibrated numerical analysis (external link, opens in new window) 

J. Palumbo, M. Navi, S. S. H. Tsai, J. K. Spelt, and M. Papini

2020 | AIP Advances | 10 (12), 125101

Numerical simulation results of inertial focusing in helical channels.

33.

Lab on a rod: size-based particle separation in a helical channel (external link, opens in new window) 

J. Palumbo, M. Navi, S. S. H. Tsai, J. K. Spelt, and M. Papini

2020 | Biomicrofluidics | 14 (16), 064104

Experimental device image of helical microfluidic channel.

32.

Magnetic water-in-water droplet microfluidics: systematic experiments and scaling mathematical analysis (external link, opens in new window) 

M. Navi, N. Abbasi, A. Salari, and S. S. H. Tsai

2020 | Biomicrofluidics | 14 (2), 024101

Schematic diagram showing the magnetic deflection and sorting of water-in-oil droplets.

31.

Expansion-mediated breakup of bubbles and droplets in microfluidics (external link, opens in new window) 

A. Salari, J. Xu, M. C. Kolios, and S. S. H. Tsai

2020 | Physical Review Fluids | 5, 013602

Schematic drawings and plots showing the controlled breakup of microbubbles in a microfluidic expansion.

30.

A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components (opens in new window) 

E. Azarsa, M. Jeyhani, A. Ibrahim, S. S. H. Tsai, and M. Papini

2020 | Biomicrofluidics | 14 (4), 044103

Microfluidic mold made from abrasive jet micromachining.

29.

Sizing biological cells using a microfluidic acoustic flow cytometer (external link, opens in new window) 

E. M. Strohm, V. Gnyawali, J. A. Sebastian, R. Ngunjiri, M. J. Moore, S. S. H. Tsai, and M. C. Kolios

2019 | Scientific Reports | 9, 4775

Schematic illustrating the combination of ultrasound and microfluidics to interrogate single cells.

28.

Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation (external link, opens in new window) 

M. Jeyhani, V. Gnyawali, N. Abbasi, D. K. Hwang, and S. S. H. Tsai

2019 | Journal of Colloid and Interface Science | 553, 382-389

A hybrid microfluidic device generates microdroplets from aqueous two phase system fluids.

27.

Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis (external link, opens in new window) 

V. Gnyawali, E. M. Strohm, O. Wang, S. S. H. Tsai, and M. C. Kolios

2019 | Scientific Reports | 9, 1585

Schematic diagram describing how a laser can induce a photoacoustic wave.

26.

Diamagnetic droplet microfluidics applied to single-cell sorting (external link) 

S. Buryk-Iggers, J. Kieda, and S. S. H. Tsai

2019 | AIP Advances | 9 (7), 075106

Schematic diagram of the diamagnetic separation of water-in-oil droplets in a microfluidic system.

25.

Controlled generation of spiky microparticles by ionic cross-linking within an aqueous two-phase system (external link, opens in new window) 

N. Abbasi, M. Navi, J. K. Nunes, and S. S. H. Tsai

2019 | Soft Matter | 15 (16), 3301-3306

Cover article of Soft Matter volume 15, issue 16.

Cover_SM015016.indd

24.

Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform (external link, opens in new window) 

M. Navi, N. Abbasi, M. Jeyhani, V. Gnyawali, and S. S. H. Tsai

2018 | Lab on a Chip | 18 (22), 3361-3370

Cover article of Lab on a Chip volume 18, issue 22.

2018 cover article in Lab on a Chip describing diamagnetic droplet sorting.

23.

Microfluidic generation of particle-stabilized water-in-water emulsions (external link, opens in new window) 

N. Abbasi, M. Navi, and S. S. H. Tsai

2018 | Langmuir | 34 (1), 213-218

Microfluidic experimental setup, and microscopic images of Pickering emulsions generated with aqueous two phase system droplets.

22.

Controlled electrospray generation of non-spherical alginate microparticles (external link, opens in new window) 

M. Jeyhani, S. Y. Mak, S. Sammut, H. C. Shum, D. K. Hwang, and S. S. H. Tsai

2018 | ChemPhysChem | 19 (16), 2113-2118

Non-spherical particles generated by a controlled electrospray process.

21.

Honey, I shrunk the bubbles: microfluidic vacuum shrinkage of lipid-stabilized microbubbles (external link, opens in new window) 

V. Gnyawali, B-U Moon, J. Kieda, R. Karshafian, M. C. Kolios, and S. S. H. Tsai

2017 | Soft Matter | 13 (22), 4011-4016

"Tiny bubbles made easier" (external link, opens in new window) Chemistry World
"Researchers make waves in the ultrasound world" (opens in new window) Ryerson Today
Cover article of Soft Matter volume 13, issue 22.

2017 cover article in Soft Matter on microbubble shrinkage.

20.

Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes (external link, opens in new window) 

A. Salari, V. Gnyawali, I. M. Griffiths, R. Karshafian, M. C. Kolios, and S. S. H. Tsai

2017 | Soft Matter | 13, 8796-8806

Mathematical model of bubble volume versus time.

19.

Stable microfluidic flow focusing using hydrostatics (external link, opens in new window) 

V. Gnyawali, M. Saremi, M. C. Kolios, and S. S. H. Tsai

2017 | Biomicrofluidics | 11 (3), 034104

Hydrostatically driving a microfluidic flow.

17.

Shrinking, growing, and bursting: microfluidic equilibrium control of water-in-water droplets (external link, opens in new window) 

B-U Moon, D. K. Hwang, and S. S. H. Tsai

2016 | Lab on a Chip | 16 (14), 2601-2608

Cover article of Lab Chip volume 16, issue 14, Jul. 2016.

2016 cover article in Lab on a Chip.

16.

Water-in-water droplets by passive microfluidic flow focusing (external link, opens in new window) 

B-U Moon, N. Abbasi, S. G. Jones, D. K. Hwang, and S. S. H. Tsai

2016 | Analytical Chemistry | 88 (7), 3982-3989

2016 cover article in Analytical Chemistry.

15.

Microfluidic magnetic self-assembly at liquid-liquid interfaces (external link, opens in new window) 

S. G. Jones, N. Abbasi, B-U Moon, and S. S. H. Tsai

2016 | Soft Matter | 12 (10), 2668-2675

Cover article of Soft Matter volume 12, issue 10, Mar. 2016.

2016 cover article in Soft Matter.

14.

Floating and sinking of self-assembled spheres on liquid-liquid interfaces: rafts versus stacks (external link) 

S. G. Jones, N. Abbasi, A. Ahuja, V. Truong, and S. S. H. Tsai

2015 | Physics of Fluids | 27 (7), 072102

Schematic diagrams showing monolayer and stacking deposition geometries.

13.

Detection of trace arsenic in drinking water: challenges and opportunities for microfluidics (external link) 

N. Yogarajah and S. S. H. Tsai

2015 | Environmental Science: Water Research and Technology | 1, 426-447

Top 10 most downloaded articles of ESWRT in 2015

Schematic diagram of the ideal arsenic water contamination sensor.

12.

Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures (external link) 

B-U Moon, S. G. Jones, D. K. Hwang, and S. S. H. Tsai

2015 | Lab on a Chip | 15 (11), 2437-2444

Top 15 most read articles of Lab Chip in May 2015

Schematic diagram of water-in-water droplet generation by pulsatile flows.

11.

Rotary polymer-micromachines: In situ fabrication of microgear components in microchannels (external link) 

B-U Moon, S. S. H. Tsai, and D. K. Hwang

2015 | Microfluidics and Nanofluidics | 19 (1), 67-74

Experimental images of a gear made by stop flow lithography.

10.

Microfluidic conformal coating of non-spherical magnetic particles (external link) 

B-U Moon, N. Hakimi, D. K. Hwang, and S. S. H. Tsai

2014 | Biomicrofluidics | 8 (5), 052103

Top 5 most read articles of Biomicrofluidics in Sept. 2014

Experimental image of coating non-spherical particles.

9.

Electric field induced sheeting and breakup of dielectric liquid jets (external link) 

A. Khoshnevis, S. S. H. Tsai, and E. Esmaeilzadeh

2014 | Physics of Fluids | 26 (1), 012103

Cover article of Phys. Fluids volume 26, issue 1, Jan. 2014

Journal cover of Physics of Fluids, showing electrohydrodynamic jets.

8.

One-step, two-dimensional microfluidics-based synthesis of three-dimensional particles (external link) 

N. Hakimi, S. S. H. Tsai, C. H. Cheng, and D. K. Hwang

2014 | Advanced Materials | 26 (9), 1393-1398

Non-spherical particles generated by stop flow lithography.

7.

Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment (external link) 

S. S. H. Tsai*, I. M. Griffiths*, Z. Li, P. Kim, and H. A. Stone

2013 | Soft Matter | 9 (35), 8600-8608

* indicates equal contribution authors

Schematic diagram of the magnetic deflection of a free surface.

6.

Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis (external link) 

J. K. Nunes, S. S. H. Tsai, J. Wan and H. A. Stone

2013 | Journal of Physics D: Applied Physics | 46 (11), 114002

Top 10 most read articles of J. Phys. D. in Mar. 2013

Schematic drawings of different ways to generate droplets and fibers.

5.

Microfluidic ultralow interfacial tensiometry with magnetic particles (external link) 

S. S. H. Tsai, J. S. Wexler, J. Wan and H. A. Stone

2013 | Lab on a Chip | 13 (1), 119-125

Editors selected Lab on a Chip Top 10% article in 2013

Experimental images of magnetic particles going through a liquid-liquid interface.

4.

Conformal coating of particles in microchannels by magnetic forcing (external link) 

S. S. H. Tsai, J. S. Wexler, J. Wan and H. A. Stone

2011 | Applied Physics Letters | 99 (15), 153509-3

Experimental images of particles being coated.

3.

Microfluidic immunomagnetic multi-target sorting—a model for controlling deflection of paramagnetic beads (external link) 

S. S. H. Tsai, I. M. Griffiths and H. A. Stone

2011 | Lab on a Chip | 11 (15), 2577-2582

Schematic diagram of microfluidics magnetic particle sorting.

2.

Selective spreading and jetting of electrically driven dielectric films (external link) 

P. Kim, C. Duprat, S. S. H. Tsai and H. A. Stone

2011 | Physical Review Letters | 107 (3), 034502

Experimental images of dielectric jetting.

1.

Inclined to splash: triggering and inhibiting a splash with tangential velocity (external link) 

J. C. Bird, S. S. H. Tsai and H. A. Stone

2009 | New Journal of Physics | 11 (6), 063017

Images of different droplet splashing configurations.