QMS 130: Equation of a Line

SLOPES, INTERCEPTS, PARALLEL, \& PERPENDICULAR LINES

Slope

A value that describes the steepness and direction of a line. The slope of a straight line between two points, let's say, ($\mathrm{x} 1, \mathrm{y} 1$) and ($\mathrm{x} 2, \mathrm{y} 2$) can be determined by finding the difference between the coordinates of the points. The slope is usually represented by the letter ' m '.

The formula for finding the slope of a line is:

Theoretically -> slope $=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}$

Mathematically ->

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

where two points on the line are

$$
\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right)
$$

A key point to remember is that when you have a vertical line, there is no slope. While a horizontal line has zero slope. Here's a quick trick to remember this.

FIGURE 3.3 Vertical and horizontal lines.

QMS 130: Equation of a Line

SLOPES, INTERCEPTS, PARALLEL, \& PERPENDICULAR LINES

Equation of a Line

Once you find the slope of the line, you have to form an equation of the line. There are 2 equations used to find the equation of a line.

Point-Slope Form

This formula is used to find the equation of a line when there is no y-intercept given. Therefore, you might just be given one point on the line and the slope of the line.

As a reminder, the y-intercept is the point on the graph where the line crosses the y-axis. This coordinate is expressed as $(0, b)$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

is a point-slope form of an equation of the line through $\left(x_{1}, y_{1}\right)$ with slope m.

Slope-Intercept Form

This formula is used when you are given the slope as well as the y-intercept.

$$
y=m x+b
$$

is the slope-intercept form of an equation of the line with slope m and y-intercept b.

Parallel Lines

Two lines are parallel if and only if they have the same slope or are both vertical.
Therefore, if given two equations in the $y=m x+b$ form, if they have the same ' m ' they are parallel lines.

Here is an example of two parallel line equations.
$y=2 x+3$
$y=2 x-1$

They both have the same slope of 2.

QMS 130: Equation of a Line

SLOPES, INTERCEPTS, PARALLEL, \& PERPENDICULAR LINES

Perpendicular Lines

Perpendicular lines are two lines that intersect each other at a 90 degree angle. Two lines are perpendicular if and only if their slopes multiply to give -1 .

Here is an example of two perpendicular line equations.
$y=-2 x+3$
$y=\frac{1}{2} x-1$

By multiplying the two slopes, $-2 \times \frac{1}{2}$, you get $\mathbf{- 1}$.

