# **QMS210: Hypothesis Testing**

Smith, D., & Chua, C. (2020). Business Statistics 15th Custom Edition for Ryerson University. New York: Pearson Education Inc.

## **Decision rules for Hypothesis testing:**

- If the test statistic is inside the critical value range, do not reject the null hypothesis
- If the test statistic is outside the critical value range, reject the null hypothesis
- Example: critical values -1.69, 1.69. We reject if test stat is less than -1.69 or more than 1.69

#### OR

- If p-value is greater than or equal to  $\alpha$ , do not reject the null hypothesis
- If p-value is less than  $\alpha$ , reject null hypothesis
- **Note:**  $\alpha$  is the level of significance (1- confidence level)
- **Example:** 95% confidence is  $\alpha = 0.05$

## **Critical values**

- **Z Tests:** Normal distribution (F5, F1), InvN (F3), tail on right, area is  $\alpha$ ,  $\sigma$  = 1, and  $\mu$  = 0
- **T Tests:** T distribution (F5, F2), InvT (F3), area is  $\alpha$ , df = n -1
- **F Tests:** After finding out both samples' standard deviation, F distribution (F5, F4), area is  $\alpha$ , n:df is the
  - Degrees of freedom (n-1) of the sample with the higher standard deviation, d:df is the degrees of freedom of the sample with the lower standard deviation (given or found with Calc function)
- Important: the area must be divided by 2 for a 2-tailed test. (  $\alpha = 0.1$  two tailed test has area 0.05)

## Hypothesis Testing: 1 Sample Tests (Chapter 11)

| Two Tailed: (differs) | Right Tailed: (greater than) | Left Tailed: (less than) |
|-----------------------|------------------------------|--------------------------|
| $H_0: \mu = #$        | $H_0: \mu \leq \#$           | <i>H</i> ₀: μ ≥#         |
| $H_1: \mu \neq \#$    | $H_1: \mu > #$               | $H_1: \mu < \#$          |

**Note:** # is the value being tested (test whether the mean differs from 45, #=45) **Also** for proportion tests replace  $\mu$  with  $\pi$  in format

### **<u>1 Sample Hypothesis Testing:</u>**

(σ known) = Z Test (1-S)

• STAT -> TEST -> Z -> 1-S

Page 1 of 3





# **QMS210: Hypothesis Testing**

Smith, D., & Chua, C. (2020). *Business Statistics 15th Custom Edition for Ryerson University*. New York: Pearson Education Inc.

- ( $\sigma$  unknown) = T Test (1-S)
  - STAT -> TEST -> T -> 1-S

Proportions = Z Test (1- P)

• STAT -> TEST -> Z -> 1-P

# Hypothesis Testing: 2 Sample Tests (Chapter 12)

 $(\sigma \text{ known}) = \text{Z Test} (2-\text{S})$ 

- \*When both  $\sigma$  1 and  $\sigma$  2 are known
- STAT -> TEST -> Z -> 2-S

## ( $\sigma$ unknown) = T Test (2-S) - Pooled On

- Pooled **On**: used when both  $\sigma$  1 and  $\sigma$  2 are unknown and variance is equal
- STAT -> TEST -> T -> 2-S
- Df = (n1 + n2) 2

## ( $\sigma$ unknown) = T Test (2-S) - Pooled Off

- Pooled **Off**: used when  $\sigma$  1 and  $\sigma$  2 are unknown and variance is not equal
- STAT -> TEST -> T -> 2-S
- Df = must be computed in the calculator by calculating t-test values first

| $H_0: \mu_1 = \mu_2$    | $H_0: \mu_1 \leq \mu_2$ | $H_0: \mu_1 \ge \mu_2$     |
|-------------------------|-------------------------|----------------------------|
| $H_1: \mu_1 \neq \mu_2$ | $H_1: \mu_1 > \mu_2$    | $H_{1}: \mu_{1} < \mu_{2}$ |

## ( $\sigma$ unknown) = T Test (2-S) Paired

- Paired: used when  $\sigma$  1 and  $\sigma$  2 are unknown and the samples are **dependent**
- STAT -> TEST -> T -> 1-S
- Df = n 1





Academic Success Centre

# **QMS210: Hypothesis Testing**

Smith, D., & Chua, C. (2020). *Business Statistics 15th Custom Edition for Ryerson University.* New York: Pearson Education Inc.

### Proportion ( $\sigma$ is known): Z Test (2 -P)

- Used to find out if there is a difference between two population proportions. Both  $\sigma$  1 and  $\sigma$  2 are known
- STAT -> TEST -> Z -> 2-P

### Variance F-Test: F-Test (2-S)

- to determine whether to use pooled variance T test or not pooled variance T test
- STAT -> TEST -> F
- square root the variance provided in the question to get standard deviation
- degrees of freedom: n<sub>1</sub> 1 and n<sub>2</sub> 1

 $H_0$ : =  $H_1$ :  $\neq$ 

Page 3 of 3





Academic Success Centre