Bonds

Coupon rate x Face value CPN =# of CPN pmts./year

Use calculator to figure out Price/YTM/Face value

N = # of periods, <u>not years</u> (yrs x cpm frequency)

I% = YTM (NOT CPN rate)

PV = price of a bond

PMT = CPN (use formula for the coupon)

FV = Face value

**enter PMT and FV as +, but PV as - (inflows/outflows)

- Treasury Bonds/ Government bonds are risk free
- Any other bonds have some risk that must be compensated
- ✓ CPN%>YTM or PV > FV = Premium
- ✓ CPN%=YTM or PV = FV = Par
- ✓ CPN%<YTM or PV< FV = Discount
- When interest rates rise, bond prices fall (vice versa)
- Long term bonds and bonds with lower coupons are more sensitive to interest rates
- Credit spread: YTM of a bond YTM of treasury Bond

NPV/investment decisions

• Three decision rules: (always decide based on NPV)

NPV > 0, accept Insert given cash flows onto IRR > r or i%the list in calc. compute NPV PBC < specified period (input I%), or find IRR/PBCK

- IRR = cost of capital at which NPV is 0
- If projects have different lives, compute NPV of each one and then use that NPV as FV, input N and I% and solve for payment; compare individual payments
- Profitability index = $\frac{Value\ created/NPV}{Resource\ Cosnumed}$

Risk and Return

-Realized return of investing in a stock is the same as in chapter 7 **rE** = $\frac{Div1+P1}{P0}$ -1 = $\frac{Div 1}{p0}$ + $\frac{P1-P0}{P0}$

-Average Annual Return and Variance(can also use calc)

$$\overline{R} = \frac{1}{T}(R_1 + R_2 + ... + R_T)$$
 (Eq. 10.3)

$$Var(R) = \frac{1}{T-1} \left((R_1 - \overline{R})^2 + (R_2 - \overline{R})^2 + \dots + (R_T - \overline{R})^2 \right)$$
 (Eq. 10.4)

$$SD(R) = \sqrt{Var(R)}$$
 (Eq. 10.5)

- Individual investment realized return

$$1 + R_{annual} = (1 + R_1)(1 + R_2)(1 + R_3)(1 + R_4)$$
 (Eq. 10.2)

95% confidence interval

Average \pm (2 × standard deviation)

$$\overline{R} \pm (2 \times SD(R))$$
 (Eq. 10.6)

- Can only diversify unsystematic risk! Not systematic bc it is the cost of investing in the market.
- No clear relationship between volatility (St. D) and return for individual stock

Stocks

$$\mathbf{rE} = \frac{Div1 + P1}{P0} - 1 = \frac{Div \ 1}{p0} + \frac{P1 - P0}{P0}$$
 (Div. yield + capital gain rate)

Dividend discount model – discount divs using rE to get the PV

$$P_0 = \frac{Div1}{(1+rE)} + \frac{Div2}{(1+rE)^2} + \dots + \frac{Div_n}{(1+rE)^n} + \frac{P_n}{(1+rE)^n}$$

**Use Cash Flow function on Calc.

Use Perp. Formula for continuing stable growth divs

$$P_0 = \frac{Div^1}{rE - g}$$
 (only brings it back 1 year!)

- Change in earnings = New inv x Return on New Inv(earnings x Retention rate)
- Growth (g) = Retention R. x Return on new investment
- Repurchases Model: $P_0 = \frac{Pv(total\ div + repurchases)}{Shares\ Outstanding\ at\ yr\ 0}$
- Enterprise Value = Market value of equity + debt cash
- FCF = EBIT (1-Tc) + Depr CapEx Inc. In NWC
- V₀= PV of all Future Free cash Flows

•
$$V_0$$
= PV of all Future Free cash Flows
$$V_0 = \frac{FCF1}{(1+rwacc)} + \frac{FCF2}{(1+rwacc)^2} + \dots + \frac{FCF_n}{(1+rwacc)^n}$$
• $P_0 = \frac{V0 + Cash0 - Debt0}{(1+rwacc)^n}$

• $P_0 = \frac{r_0}{Shares\ outstanding\ 0}$

**the different cash flows or dividends can be entered into the Cash function to calculate PV

Capital Budgeting (ONLY INCREMENTAL AMOUNTS)

- Unlevered NI = (INC. REV INC. COSTS CCA) X (1 Tc)
- FCF = Unlevered NI + CCA CapEx Increase in NWC
- NWC = Cash + Inv + rec Payables (current assets current
- After-tax CF from asset sale = sale price (tax rate x cap gain)
- CCA deductions for FCF:

<u>Yr</u>	UCC	CCA
1	1/2 CapEx (half yr rule)	UCC1 x CCA rate
<u>2</u>	CapEx – CCA ded. From yr 1	UCC2 x CCA rate
<u>3</u>	UCC yr 2 – CCA ded yr 2	UCC3 x CCA rate

To find NPV

- Find NPV of FCF (EXCLUDING CCA)
- 2. Find PV of CCA tax shields

$$= \frac{CapEx \times CCA \ rate \times Tc}{(r+CCA \ rate)} \times \frac{1+\frac{r}{2}}{1+r}$$

$$- \frac{Min \ sale \ price \times CCA \ rate \times Tc}{(r+CCA \ rate)} \times \frac{1}{(1+r)^t}$$
 (only if u sell)

Systematic risk and the Equity Risk premium

Weight of inv: $w_i = \frac{\text{Value of investment } i}{\text{Total value of portfolio}}$

Return of a portfolio $R_p = w_1 R_1 + w_2 R_2 + \dots + w_n R_n$

Expected return $E[R_p] = w_1 E[R_1] + w_2 E[R_2] + ... + w_n E[R_n]$

 $Corr(R_i, R_j) = \frac{Cov(R_i, R_j)}{SD(R_i)SD(R_j)}$

Correlation of a stock Variance of a portfolio:

Var(
$$R_p$$
) = $w_1^2 SD(R_1)^2$ + $w_2^2 SD(R_2)^2$ + $2w_1w_2 Corr(R_1, R_2)SD(R_1)SD(R_2)$

Market capitalization = #of shares outstanding x P/Share Beta of the market = 1, Beta of the treasury bills or cash = 0

$$E[R_i] = r_f + \beta_i \left(E[R_{Mkt}] - r_f \right)$$
 Market Risk premium = return of the market – risk free rate